defineExperiments
defines a set of experiments given as tidy data frame to the given model.
defineExperiments(
experiment_type = c("time_course", "steady_state"),
data = NULL,
types = NULL,
mappings = NULL,
weights = NULL,
weight_method = NULL,
normalize_weights_per_experiment = FALSE,
filename = NULL
)
string
list of tidy data frames
data column types as character vector
Allowed types of columns are: 'time', 'independent', 'dependent', 'ignore'.
Type 'time' is only allowed for time course experiments.
Can be a named vector to only specify for a subset of data columns.
data column mappings as character vector
Expects value references.
If no mappings are given, column names can serve as mappings.
Can be a named vector to only specify for a subset of data columns.
data column weights as numeric vector
`NaN` corresponds to automatic weight.
Can be a named vector to only specify for a subset of data columns.
string
Allowed methods: 'mean', 'mean_square', 'sd', 'value_scaling'.
flag
optional string
When adding the experiments to a COPASI model, this filename will be used. In use cases, where experiments are only used temporarily, the filename is ignored.
copasi_exp object for input into related functions
CoRC uses it's own methodology for defining experimental data for use with a COPASI model.
To this end it is required that experimental data be imported to R by the user and transformed to tidy data.
For help on data import and tidying see: vignette("tidy-data", "tidyr")
.
This function adds required metadata to experimental data for use with CoRC.
addExperiments
clearExperiments
Other parameter estimation:
addExperiments()
,
addParameterEstimationParameter()
,
clearExperiments()
,
clearParameterEstimationParameters()
,
clearValidations()
,
getParameterEstimationSettings()
,
runParameterEstimation()
,
setParameterEstimationSettings()